Showing posts with label mapping. Show all posts
Showing posts with label mapping. Show all posts

Friday, June 15, 2012

The power of information: Map Kibera uses GIS, SMS, video and the web to gather community data

The Map Kibera project works with young people from one of Africa’s biggest slums. They use GIS, SMS, video and the web to gather data and make it available to the community, where it can be applied to influence policies related to the area.

Located just five kilometres from the capital of Kenya, Nairobi, the residents of Kibera have grown accustomed to the many foreign experts visiting their community to conduct surveys and ask questions for yet another data collection initiative. As one of the largest slum areas in Africa, it draws staff from development organisations, research institutes and NGOs from all over the world.

As all these organisations and researchers generate more and more documents and project reports about Kibera, very little of the information gathered is ever made available to the 250,000 people who live there. Access to the data would give the people of Kibera the chance to present their own view of the living conditions in the community. They would be able to influence public policy to achieve improvements to the facilities that they believe are important.

In 2009, Erica Hagen, a specialist in the use of new media for development, and Mikel Maron, a digital mapping expert, started Map Kibera to help residents use mapping technology to gather information about their community. For the initial phase of the project, they recruited 13 local young people, aged between 19 to 34, including five women and eight men, from each village in Kibera.

The participants received two days training on how to use handheld GPS receivers to gather location data, and an introduction to using the specialised software in a computer lab. The team was supported by five GIS professionals from Nairobi who had volunteered their time. The participants then spent three weeks walking along the roads, pathways and rail tracks with their GPS receivers recoding the location data. They collected more specific information on water and sewage locations, education, religious and business locations, as well as anything else the participants deemed useful.

Collaboration

Rather than create a stand-alone map, the location data gathered by the project was added to the open source project OpenStreetMap, which is a crowdsourced map made by volunteers around the world. Map Kibera contributed to filling their part of OpenStreetMap, which would also make the information available to more people, and help to raise the profile of the project.

The team also wanted to add a multimedia aspect to the maps, by including video footage of points of interest from around Kibera, and uploading them to YouTube. Three members of Carolina for Kibera (CFK), affiliated with the University of North Carolina, assisted with the filming and helped to document the map making process using small camcorders.

The young people involved in the project developed a sense of achievement as they learned the new skills, and gained confidence in using new technologies. They also began to see the value of the information they were collecting and to understand the impact it could have on their community. However, it was not so easy to convince other residents.

There was a lot of cynicism in the local community caused by the NGOs who had previously come to Kibera but never shared their information. People were, therefore, reluctant to be filmed and photographed. Although the GPS data gathering was less intrusive, the technology presented other difficulties.

The lack of reliable power and inadequate internet access in Kibera were major challenges, especially when it came to uploading large video files to the web, which can take a long time. The slow internet connection also made it difficult to update security software on the computers, leaving them vulnerable to damaging viruses.

These were challenges that could be overcome in time, but for the project to be a real success, it would have to show that it could provide useful information to the community. The mapping project was, therefore, expanded to incorporate public participation geographic information systems (PPGIS) to gather information on specific issues affecting the residents of Kibera.

The group focused on collecting detailed data on four sectors: health, security, education, and water and sanitation. In February 2010, Map Kibera developed a partnership with UNICEF and added a fifth topic: mapping girls’ security. The aim here was to get the girls’ views on possible threats to their security, along with location information, for use in compiling data on their vulnerability to HIV/Aids.

Nine mappers collected data on the five topics using paper forms, gathering, for example, details of the costs and services offered at clinics and chemists in the area. To further encourage community involvement and get feedback on the information gathered, the team produced printed versions of maps for each area and placed transparencies on top so that residents could make changes and additions as necessary. Map Kibera also involved other interested organisations working in the health and security sectors in the area, including African Medical and Research Foundation and a women's group called Kibera Power Women.

Positive picture

As well as making the maps and multimedia available online, Map Kibera looked for other ways for the community to use the information gathered. For instance, the video material filmed as part of the mapping exercises could also be used to present news stories of the area. This idea expanded and the team worked with two youth from Kibera, who already had film-making experience.

They trained 18 young people to use small ‘ultra-portable’ Flip video cameras and the software to help them share their efforts on the web. This led to Kibera News Network (KNN), a citizen journalism initiative to present features and news stories affecting Kibera, showing positive aspects of the area and providing accurate coverage of negative events.

Mainstream media often focused on the misery and negativity in Kibera. The only events certain to attract mainstream media attention were clashes with the police or when the trains that run along the area’s peripheries were disrupted. Map Kibera attempts to change the perception of Kibera by allowing people to create and share their own stories.

The KNN teams edit the videos themselves and post them on YouTube – giving them a direct and immediate link to a global audience. The videos are also available on the Voice of Kibera, a community news website that also hosts the digital map. Residents can even post their own geo-located stories to the map using SMS.

Map Kibera used the open source tool, Ushahidi, to make the contributions via SMS possible. Ushahidi was initially developed after the 2008 Kenyan elections, to track reports of violence. It is a tool for crowdsourcing information using, e-mail, Twitter and the web as well as SMS. When someone in Kibera contributes an article, an SMS gateway filters the incoming texts according to keywords. Messages with the keyword ‘Kibera’ are fed into the Voice of Kibera website, where they are mapped using GPS coordinates, and approved by the editor before finally appearing on the site.

In 2010, the team founded the GroundTruth Initiative to support Map Kibera and other future projects. In the same year, UN Habitat awarded Map Kibera with a youth fund grant to expand its work to other parts of Nairobi, leading to co-operation with the community in another slum, Mukuru. A group in Mathare Valley, the second-largest slum in Nairobi, was also interested in creating a similar project, and, through funding from Plan International, a team is now collaborating on a participatory development programme there.

The Map Kibera Trust, which has a core membership of 30 young people, is working with similar communities in other parts of Kenya, and in Tanzania. A core aim of the Trust is to not only make people aware of openly available technology and information, but also to train local people to use them to benefit the community. The information now available to the residents of Kibera has caused a shift in power, providing them with reliable data to present their own case, and enabling to directly influence the policies that affect their lives.

By Erica Hagen and Mikel Maron
Article re-published with permission from ICT Update

Erica Hagen is a freelance writer, photographer, videographer and specialist on new media for development.
Mikel Maron is co-director of GroundTruth Initiative, and board member of OpenStreetMap Foundation

Related links



Tuesday, June 12, 2012

Climate Change and African Political Stability dynamic mapping tool released


The Strauss Center’s Climate Change and African Political Stability (CCAPS) program and AidData recently released a dynamic mapping tool that allows for analysis of climate change and conflict across Africa, plus development assistance in Malawi. The mapping tool uses Esri’s ArcGIS platform to enable users to select and layer combinations of CCAPS data onto one map. It also shows how conflict dynamics are changing over time and space. This tool provides an interactive medium for researchers to explore how climate change vulnerability and conflict interact, and in Malawi, to see how aid is distributed across different areas.

CCAPS climate security vulnerability data provides information on four sources of vulnerability: physical exposure to climate-related hazards, population density, household and community resilience, and governance and political violence. Chronic climate security vulnerability is located where these four sources of vulnerability conjoin.



Monday, February 27, 2012

Aerial Photography and Image Interpretation - third edition published

Extensively revised to address today's technological advances, Aerial Photography and Image Interpretation, Third Edition offers a thorough survey of the technology, techniques, processes, and methods used to create and interpret aerial photographs.

The new edition also covers other forms of remote sensing with topics that include the most current information on orthophotography (including digital), soft copy photogrammetry, digital image capture and interpretation, GPS, GIS, small format aerial photography, statistical analysis and thematic mapping errors, and more.

A basic introduction is also given to nonphotographic and space-based imaging platforms and sensors, including Landsat, lidar, thermal, and multispectral.

This new Third Edition features:
  • Additional coverage of the specialized camera equipment used in aerial photography 
  • A strong focus on aerial photography and image interpretation, allowing for a much more thorough presentation of the techniques, processes, and methods than is possible in the broader remote sensing texts currently available Straightforward, user-friendly writing style 
  •  Expanded coverage of digital photography 
  •  Test questions and summaries for quick review at the end of each chapter 
Written in a straightforward style supplemented with hundreds of photographs and illustrations, Aerial Photography and Image Interpretation, Third Edition is the most in-depth resource for undergraduate students and professionals in such fields as forestry, geography, environmental science, archaeology, resource management, surveying, civil and environmental engineering, natural resources, and agriculture.

Also available in Kindle edition

Authors:

The late David P. Paine was Professor Emeritus in the Department of Forest Engineering, Resources, and Management at Oregon State University.

James D. Kiser is an Assistant Professor and Head Undergraduate Advisor in the Department of Forest Engineering, Resources, and Management at Oregon State University in Corvallis, Oregon.??He is also a Certified Photogrammetrist.

Saturday, January 28, 2012

Adapting to risk: Communities use GIS and GPS to assess climate risks in the Cook Islands


A local NGO tested an innovative participatory mapping approach to help communities in the Cook Islands assess climate risks. The resulting maps highlighted vulnerable areas, allowing the communities to develop strategies to adapt to climate change.

Extreme weather events, such as tropical cyclones, long periods of drought, sea level rise and higher temperatures, lead to loss of soil fertility and land degradation, reducing food security in farming communities. The Cook Islands, like many small islands, are highly vulnerable to the impacts of climate change and sea level rise. They comprise small land masses surrounded by ocean, and are located in a region prone to natural disasters.

With limited long-term meteorological data available, it is difficult to make accurate predictions on how climate change will affect the Cook Islands. However, there is consensus that the region is likely to experience more frequent extreme weather events, including floods, droughts, periods of extreme heat, an increase in cyclone intensity, increased climate variability and rise in sea levels.
Observations by Pacific Island communities indicate that predicted climate change effects are being experienced, and are causing considerable social, economic and environmental pressures. The ability of the communities to adapt to a changing climate is generally low, due to lack of information and awareness of the potential effects of changing weather patterns. Traditional natural resource management practices, however, still practiced in some parts of the Cook Islands, provide important tools for resilience in the face of environmental change.

In response to growing concerns about the possible effects of changing weather patterns, a local NGO, Te Rito Enua (TRE), tested the use of participatory GIS to assess climate vulnerability and adaptation planning in the Cook Islands. Together with the country’s government and with the support of the Asian Development Bank, TRE worked with four communities on the islands of Rarotonga and Aitutaki.
Both islands face similar problems of water shortages, deforestation and soil erosion as a result of climate change. Their terrain, however, is quite different. Rarotonga, the most populous island in the country, is mountainous, steep and heavily forested. Aitutaki is mainly atoll and lagoon, and so is flatter with some steeper land on the remains of the submerged volcano around which the atoll formed.

Training
The project began in 2010, and lasted 10 months. In that time, TER worked with the communities to develop the practical tools and skills necessary to produce their own specific climate risk analysis. The organisation gave training courses in participatory mapping, with components in vulnerability and risk assessment, climate models, GPS and GIS, and map interpretation.

Participants, mostly volunteers, came from a cross-section of the community demography, ranging from school-aged youth to elders, including community leaders, resource users and professional resource managers. As a result of the training, all participants had a basic knowledge of the methods to be employed in the project, which they used to collect data from the field, and record assets that could be included later on maps.

This data, which participants within their own frame of reference, helped them identify issues that could affect the vulnerability of individual households and their wider community. They looked at facilities such as energy provision, water supply, sanitation services, port facilities and even civil defence. Important risks associated with climate change were identified through the assessment and mapping processes that were neither considered nor evident during national-level vulnerability assessments. One example is the waste management facilities situated near the pilot communities. Runoff from these landfill sites at times of heavy rain can adversely affect the adjoining aquatic ecosystems. The communities rely heavily on these vulnerable coastal resources for their livelihoods, and so future waste management solutions need to include these considerations at the early planning stages.

Additionally, the mapping information showed that disaster response shelters are often placed in areas vulnerable to sea-level rise and storm surge inundation. Also, some households could experience a shortage of water as the climate changes, which will mean enhanced water conservation measures, such as developing programmes for better rainwater harvesting. Rarotonga in particular is dependent upon surface water supplies for domestic consumption and has suffered periodic water shortages in recent years as sources have dried up. Another significant factor revealed by the project was the extent of invasive plant species in the environment. Observers had noticed that the watersheds of both Rarotonga and Aitutaki were infested with Cardiospermum grandiflorum (balloon vine), Merremia peltata (kurima), and Mikania micrantha (mile-a-minute weed). Rising levels of carbon dioxide create conditions that promote the growth of such invasive plants, and because their spread is facilitated by cyclones, it appears likely that they will continue to thrive as the climate changes, with – as yet – unknown implications for biodiversity and for water security. Available evidence shows that the species are having a devastating impact on the native vegetation and natural watershed systems. The implications for water supply in this already water-stressed country are not clear, but are a cause for concern.

Practical solutions
After the data collection phase, the project team integrated the information into existing government GIS files to highlight areas where a changing climate could potentially affect the environment. The resulting map layers were combined with information from a climate model commonly used for planning in the region. The new data were shared with the government to be integrated into their GIS database and made accessible to the National Environment Service, and relevant ministries. Each community received a paper map, known as a ‘vulnerability atlas’, showing the information specific to their area. The project team also facilitated meetings to discuss the implications of the mapping and the surveying process, and to gauge community perceptions of climate change. These discussions identified the main risks and developed plans for priority actions. Each community set up a Climate Change and Disaster Committee to ensure the plans would be followed. In some instances, the communities identified traditional practices, including organic farming and resource management methods, as having considerable value as adaptation measures to reduce the greatest climate change risks. One example was the traditional ra'ui system of resource allocation, which two communities identified as a way to improve the resilience of vulnerable water resources. Communities in Aitutaki also suggested promoting traditional building practices and styles, which could help mitigate the effects of the anticipated increase in extreme heat events.
Some community participants were initially sceptical about the project, because they felt that the government had already mapped everything that was important. However, once they were able to re-envision maps, and given access to mapping tools, the communities became enthusiastic. As one of the senior participants of the Aitutaki planning process observed, ‘I've lived on the island most of my life, and have today seen things I’ve never noticed before.’

Being able to participate in the production of maps that were explicitly for and about them gradually led to discussions on their social and physical environment that went well beyond the more obvious dimensions of climate change and climate adaptation. The discussions touched on deeper social issues such as cultural erosion, loss of language, unsustainable resource use, invasive species and out-migration.
Planning for climate adaptation became a way of framing the broader suite of development issues. Because of this, the communities were able to take ownership of mapping their environment and the assets within it that are important to their identity and survival.

The project showed that a community-based participatory approach is a valuable tool for bringing the reality of climate change to bear at the local and household level. A process of discussing, debating, and problem solving produces more resilient communities that are more able to organise themselves and prepare for a changing climate.

Not only does participatory mapping provide communities with tangible evidence of the risks associated with climate change, but the community mapping process also highlights behavioural and development issues that affect the vulnerability of individual households and the community at large. There was a discernable sense of empowerment by participating communities in developing vulnerability maps and having them available. Without exception, all the pilot communities requested printed copies of the vulnerability atlases for display in public places to engender support for change and implementation of their proposed action plans.

All-inclusive
Measures to build upon this project would include using the existing capacity as an emerging centre of excellence. The centre’s prime role would be to educate trainers to improve the ability of community mapping practitioners to convey techniques and best practices to other communities.

To overcome the bottleneck in trained personnel, and the high costs of using commercial products, the training of young and motivated community members in open source GIS products, such as Q-GIS, will make the adoption of this technology for community mapping possible. A regional facility to build capacity for community mapping and access to remote sensing analysis will go far towards helping Pacific island communities to adapt to climate change.

The project found that the participatory processes generated local knowledge unavailable to high-level planners. The process also generated a strong sense of ownership of the outcomes by communities, and increased the knowledge and awareness of participants about climate change risks and the implications for their families and communities. Finally, it increased the skills needed to develop more communities that are more resilient.

This approach allows adaptation strategies to be developed from the bottom-up – from the family through to the community, island and eventually the national level – at the same time as the national strategy is developed from the top down.

It should be noted, of course, that a community-based approach is no substitute for a technically rigorous national approach to climate change. Some important technical issues lie outside the competency of communities, and the scale can be too great; a patchwork of community approaches could potentially result in the geographic division of responsibilities that require a more unified approach. For example, ecosystem-based approaches require interventions at ecosystem scales.

However, it is also clear that the communities are not fully engaged on the realities of climate change. This is clearly an issue of environmental awareness and ownership. Climate change issues have so far been the 'government's role' in the eyes of many communities, largely due to government officials being the ones engaged in the climate debate and conducting climate change vulnerability and adaptation activities.
Linking the national efforts to local communities, therefore, is best demonstrated through the community-based approach of site-specific adaptation planning. Adaptation thus becomes everyone’s business.

Authors:

John Waugh
Mona Matepi
George de Romilly

Reposted with permission from ICT Update